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The deformation of an elastic micro-capsule in an infinite shear flow is studied
numerically using a spectral method. The shape of the capsule and the hydrodynamic
flow field are expanded into smooth basis functions. Analytic expressions for the
derivative of the basis functions permit the evaluation of elastic and hydrodynamic
stresses and bending forces at specified grid points in the membrane. Compared
to methods employing a triangulation scheme, this method has the advantage that
the resulting capsule shapes are automatically smooth, and few modes are needed
to describe the deformation accurately. Computations are performed for capsules
with both spherical and ellipsoidal unstressed reference shape. Results for small
deformations of initially spherical capsules coincide with analytic predictions. For
initially ellipsoidal capsules, recent approximate theories predict stable oscillations
of the tank-treading inclination angle, and a transition to tumbling at low shear
rate. Both phenomena have also been observed experimentally. Using our numerical
approach we can reproduce both the oscillations and the transition to tumbling. The
full phase diagram for varying shear rate and viscosity ratio is explored. While the
numerically obtained phase diagram qualitatively agrees with the theory, intermittent
behaviour could not be observed within our simulation time. Our results suggest that
initial tumbling motion is only transient in this region of the phase diagram.

1. Introduction
The dynamics of soft objects such as drops, capsules and cells in flow represents a

long-standing problem in science and engineering, but has received increasing interest
recently, in particular due to its relevance to biological, medicinal and microfluidic
applications. This problem is challenging from a theoretical point of view, because
the shape of these objects is not given a priori, but determined dynamically from a
balance of interfacial forces with fluid stresses. Improved experimental methods have
revealed intriguing new dynamical shape transitions due to the presence of shear flow.
The phenomenology of the dynamical behaviour depends distinctively on the specific
soft object immersed in the flow, with fluid bilayer vesicles and elastic microcapsules
as prominent classes.

Fluid bilayer vesicles assume a stationary tank-treading shape in linear shear flow,
if there is no viscosity contrast between interior and exterior fluid (Kraus et al.
1996). If the interior fluid or the membrane becomes more viscous, a transition to
a tumbling state can occur (Biben & Misbah 2003; Beaucourt et al. 2004b; Rioual,
Biben & Misbah 2004; Noguchi & Gompper 2004, 2005; Vlahovska & Gracia 2007).
Tank-treading was observed experimentally in infinite shear flow (de Haas et al.
1997; Kantsler & Steinberg 2005) and for vesicles interacting with a rigid wall
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(Lorz et al. 2000; Abkarian, Lartigue & Viallat 2002), where a dynamic lift occurs
(Seifert 1999b; Cantat & Misbah 1999; Sukumaran & Seifert 2001; Beaucourt, Biben
& Misbah 2004a). The tank-treading to tumbling transition was observed convincingly
for the first time in a recent experiment (Kantsler & Steinberg 2006). In addition to
this transition, a vacillating or breathing motion was predicted theoretically (Misbah
2006) and observed experimentally (Kantsler & Steinberg 2006) and in simulations
(Noguchi & Gompper 2007). The theoretical description has been expanded recently
beyond first order in the shear rate (Lebedev, Turitsyn & Vergeles 2007).

In contrast to fluid vesicles, microcapsules exhibit a finite shear elasticity, since
their membrane is chemically or physically cross-linked. This includes both artificial
polymerised capsules (Walter, Rehage & Leonhard 2001) and red blood cells (RBCs),
whose membrane is composed of an incompressible lipid bilayer over a thin elastic
cytoskeleton (Mohandas & Evans 1994). The resistance to shear leads to qualitatively
different behaviour, such as preventing the prolate to oblate shape transition in
viscous fluid vesicles in channel flow (Noguchi & Gompper 2005). Perhaps most
surprisingly, it also leads to qualitatively different instabilities such as wrinkling first
observed experimentally on polymerised capsules (Walter et al. 2001), which should
be distinguished from the transient creasing formation observed later on fluid vesicles
(Kantsler, Segre & Steinberg 2007). The formation of the short-length-scale wrinkles
is driven by compressive stress imposed on the membrane by the flow, while the
selection of the short length scale is due to a balance between elastic stresses and
bending forces (Finken & Seifert 2006).

When the unstressed initial shape of the cell is not spherical, material elements of
the membrane are deformed when displaced from their initial position. This shape
memory, suggested for RBCs by Fischer (2004), leads to a oscillation of the inclination
angle superimposed on the tank-treading motion and an intermittent regime between
tank-treading and tumbling (Skotheim & Secomb 2007; Abkarian, Faivre & Viallat
2007). For a review of the tank-treading behaviour of soft capsules in shear flow, see
the first two chapters of Pozrikidis (2003a).

Analytic descriptions of the rather complex motion of capsules and vesicles is only
possible for asymptotic cases, e.g. in the quasi-spherical limit (Barthès-Biesel 1980;
Barthès-Biesel & Rallison 1981; Seifert 1999a; Misbah 2006; Finken & Seifert 2006;
Lebedev et al. 2007; Vlahovska & Gracia 2007), or by restricting the number of
degrees of freedom (Keller & Skalak 1982; Rioual et al. 2004; Skotheim & Secomb
2007). One therefore has to resort to numerical methods for more complex geometries.

For the dynamics of vesicles existing solvers which treat the flow at a continuum
level either employ a discrete triangulation scheme (Kraus et al. 1996) or phase
field models (Biben & Misbah 2003). An alternative route was taken by Noguchi &
Gompper (2004, 2005), where the membrane is dynamically triangulated and the flow
is modelled by discrete effective fluid particles.

Numerical simulations of capsules were first performed in an axisymmetric geometry
(Li, Barthès-Biesel & Helmy 1988; Leyrat-Maurin, Drochon & Barthès-Biesel 1993;
Leyrat-Maurin & Barthes-Biesel 1994). Pozrikidis (1995) developed a method for
simulating three-dimensional deformations of initially spherical capsules in shear flow
using a boundary element formulation. This method was later refined by Ramanujan
& Pozrikidis (1998), who also observed oscillations of the inclination angle for
ellipsoidal capsules. However, their method was plagued by numerical instabilities for
high and low deformations due to the degradation of the grid. Further improvement
of the boundary element method allows the stable simulation of tank-treading and
tumbling motion of highly flattened capsules only by numerically smoothing the
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surface (Pozrikidis 2003b). Part of the numerical difficulties might be due to the
evaluation of bending moments: calculating the local mean curvature requires taking
second derivatives of the shape functions, which become inaccurate using finite
difference schemes. Newer approaches, such as the spectral boundary algorithms
proposed for droplets (Wang & Dimitrakopoulos 2006) and solid particles (Pozrikidis
2006), therefore use higher-order basis functions on the triangulated surface. While
these methods are very versatile, the details are rather complex. Suitable interfacial
smoothing is still needed to ensure numerical stability of the method (Wang &
Dimitrakopoulos 2006).

It is therefore the purpose of this paper to augment these approaches with a global
spectral method. In this method the shape of the capsule is expanded into a set of
smooth basis functions (Boyd 2001). This has the advantage that the resulting shape
is automatically globally smooth, which reduces the discretization error, especially in
higher derivatives such as the local mean curvature. Since the derivatives of the basis
functions are analytically known, it is easy to evaluate the elastic tensions and bending
moments at a grid of collocation points. These marker points are material points
of the underlying connected membrane. Rather than treating the hydrodynamics
in a boundary layer formulation, we expand the Stokes flow similarly in terms of
smooth basis functions. Requiring force balance at the collocation points yields the
equation of motion of the membrane. This scheme is used to systematically explore
the dynamic behaviour of capsules in shear flow, focusing on initially non-spherical
capsules as considered in the analysis by Skotheim & Secomb (2007). Although the
overall phase behaviour of the capsules is captured qualitatively by their model,
we could not observe the predicted intermittent behaviour. An analysis of the capsule
dynamics suggests that the initial tumbling motion is only a transient towards a stable
tank-treading motion.

This paper is organized as follows. In § 2, after introducing notions of differential
geometry and elasticity, we define the problem rigorously. In § 3, we develop the
spectral algorithm to calculate the dynamics of an elastic capsule. After extensive
testing for analytically known limit cases in § 4, we apply our method to ellipsoidal
capsules in § 5. Our findings are summarized in § 6. In the Appendix, we recall the
relevant differential geometry for deformed capsules.

2. Problem formulation
We consider the dynamics of a closed capsule that is embedded in an infinite

ambient flow with viscosity ηo (see figure 1). The elastic membrane encloses a second
fluid with a different viscosity ηi, defining the dimensionless viscosity contrast

ε ≡ ηi/ηo . (2.1)

In the absence of the capsule we assume a prescribed external flow u∞(x). Because
of its small thickness we consider the membrane as a two-dimensional interface that
separates the two fluids. On the typical length scales considered inertial effects of the
membrane are negligible.

Strain and curvature

In order to describe the two-dimensional membrane, which is embedded in three-
dimensional space, we recall some important terms of differential geometry (Frankel
2004; Marsden & Hughes 1983). For mathematical details of the quantities used here,
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Figure 1. Elastic capsule in hydrodynamic flow. The viscosity of the outer flow and the inner
fluid are ηo and ηi, respectively. Long and short axes of the deformed capsule are denoted
by L and S. The inclination angle β measures the angle between the direction of maximal
elongation and that of the shear flow u∞ = γ̇ yex . The angle defined by a tracer particle on
the membrane compared to the flow direction is denoted by α.

see the Appendix. A comprehensive summary of interfacial properties in the context
of membranes in hydrodynamic flow can be found in Pozrikidis (2001).

Since we consider closed membranes with the topology of a sphere S2, we can
label the material points of some reference membrane by spherical coordinates (ϑ, ϕ).
Note that for an arbitrarily deformed membrane the material point labelled by the
Lagrange coordinates (ϑ, ϕ) will be moved, and (ϑ, ϕ) will not remain spherical
coordinates.

The location of the membrane M at time t is given by the shape function r(ϑ, ϕ; t).
Length and angles on the membrane are measured by the first fundamental form
or metric tensor g with covariant components gij (A 3). The second fundamental
form or extrinsic curvature tensor k with covariant components kij (A 8) measures
how the unit normal vector of the surface changes its direction, on moving along
the membrane. The mean curvature H is defined as the arithmetic mean of the
principle curvatures, which are both the eigenvalues of the curvature tensor k and
the inverse of the principle curvature radii (A 9). In our convention (A 8), the mean
curvature H = 2/r of a sphere with radius r is positive. First and second fundamental
forms completely fix the shape of the given membrane and therefore contain all the
information about the membrane shape.

In order to describe a deformation and an elastic response, we have to specify
an unstressed reference membrane Mref given by the shape function R(ϑ, ϕ). The
corresponding metric is denoted by G and defined analogously to the metric tensor
g. The Lagrangian strain tensor ε, is, in covariant components εij , given by half the
difference of metric gij and reference metric Gij (A 10) and measures the change in
length elements of the membrane upon deformation (Marsden & Hughes 1983), and
Appendix. The strain tensor ε holds all the information about the deformation and
will be used to define an elastic energy density.

Finally, the surface dilation J (A 11) measures how an infinitesimal patch of area
dA on the reference membrane is changed upon deformation into the patch of area
da (A 7) and can be expressed by the ratio of determinants of deformed and reference
metrics (A 5).
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Constitutive laws, energy, force, stress

The deformation of the membrane from its unstressed shape costs energy, which can be
quantified by the underlying constitutive law. In general we consider resistance against
shear, dilation, and bending. Several elastic models for thin shells and membranes
are considered in the literature. A short overview is found in Barthès-Biesel, Diaz &
Dhenin (2002) and in the first two chapters of Pozrikidis (2003a). These references
directly connect the deformation with stresses and bending moments. We prefer to
derive the constitutive law from the elastic energy, as outlined in Marsden & Hughes
(1983).

Deformation from the reference shape R(ϑ, ϕ) to a shape r(ϑ, ϕ; t) costs energy
H[r]. We only consider constitutive laws derived from an energy density h[r], i.e.

H[r] =

∫
Mref

dAh[r] . (2.2)

Variation of the shape r by δr while leaving the reference shape fixed induces a
variation of the total free energy

δH =

∫
Mref

dA
δH[r]

δr
· δr ≡ −

∫
M

da f · δr , (2.3)

which defines the elastic surface force density f on the membrane by a functional
derivative

f ≡ − 1

J

δH[r]
δr

. (2.4)

We now specialize to deformation energies, which can be written as the sum of a
purely elastic and a bending part,

H[r] = Hel[r] + Hκ [r] . (2.5)

To illustrate the method, we use the specific constitutive law for the elastic free
energy

Hel =

∫
Mref

dA

(
λ + 2μ

2
(tr ε)2 + 2μ det ε

)
, (2.6)

and the curvature term (Helfrich 1973)

Hκ =

∫
M

da
κ

2
(2H − C0)

2 =

∫
Mref

dAJ
κ

2
(2H − C0)

2 (2.7)

for the bending energy. Here, κ is the bending rigidity and C0 is the spontaneous
curvature, while λ and μ are the 2d-Lamé coefficients in Hooke’s law valid for small
deformations. These coefficients correspond to the surface shear modulus Gs = μ

and the surface Poisson ratio νs = λ/(λ + 2μ) in the notation of Barthès-Biesel et al.
(2002). Other constitutive laws can trivially be implemented.

Hydrodynamics

For all experimental setups the Reynolds number is small and the flow is governed by
the linear Stokes equations. The velocity uα(x) of the inner (α = i) and outer (α = o)
fluid at the position x is determined by the incompressibility relation

∇ · uα = 0 , (2.8)

the linear momentum equation

−∇pα + ηα
uα = 0 (2.9)
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with the isotropic pressure pα , and by appropriate boundary conditions far away
from the capsule and at the membrane.

The flow must be regular everywhere and continuous across the membrane when
assuming a no-slip boundary condition. The jump in hydrodynamic traction between
both fluids is compensated by the elastic forces at the membrane

f (ϑ, ϕ) =
[
T i(r(ϑ, ϕ)) − T o(r(ϑ, ϕ))

]
· n(ϑ, ϕ) , (2.10)

where Tα is the inner and outer hydrodynamic stress tensor with Cartesian
components

T α
ij ≡ −δijp

α + ηα
(
∂iu

α
j + ∂ju

α
i

)
. (2.11)

Since we are assuming no-slip boundary conditions, the velocity is continuous across
the membrane, and the membrane is advected with the flow

ui(x)
∣∣

x=r(ϑ,ϕ;t)
= uo(x)|x=r(ϑ,ϕ;t) = ∂t r(ϑ, ϕ; t) . (2.12)

Far away from the capsule the outer flow coincides with the undisturbed external
flow u∞

uo(x) → u∞(x) for |x| → ∞ . (2.13)

Since the Stokes equations are linear, we can split the total flow into a sum of the
undisturbed flow and an induced flow

uα ≡ u∞ + uα
ind , (2.14)

where the homogeneous boundary condition uα
ind(x) → 0 far away from the capsule

is easy to implement.
For specific applications, we employ a linear shear flow (figure 1)

u∞(x) = γ̇ yex (2.15)

with shear rate γ̇ . The equations of motion of the membrane are fully determined by
Stokes’ equations (2.8), (2.9), the force balance with the elastic forces (2.10), and the
boundary conditions (2.12), (2.13) which include the membrane advection (right-hand
side of 2.12).

Dimensionless parameters

The motion of the capsule is governed by a number of dimensionless parameters:
The volume V of the capsule remains constant and defines a length scale R0

V ≡ 4π

3
R3

0 , (2.16)

which will be used as the unit length. The elastic energy density is given by the elastic
moduli depending on the given constitutive law. In our case we use the shear elasticity
μ to define an energy scale μR2

0 . The remaining elastic parameters can thus be cast
in a non-dimensional form by defining the two-dimensional Poisson number

ν ≡ λ

λ + 2μ
, (2.17)

the non-dimensional bending rigidity

κ̃ ≡ κ

μR2
0

, (2.18)
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and spontaneous curvature

C̃0 ≡ R0

2
C0 . (2.19)

The viscosity ηo can be used to define a time scale R0η
o/μ, giving the capillary

number

χ ≡ R0η
o

μ
γ̇ . (2.20)

Finally, the viscosity contrast ε has already been defined in (2.1).

3. Spectral method
We now develop a method to numerically solve the nonlinear equations of motion.

Spectral method

To transform the shape function to spectral space, we expand its Cartesian
components ri(ϑ, ϕ) ≡ r(ϑ, ϕ) · ei into scalar spherical harmonics Y m

l (ϑ, ϕ) with
l � 0, |m| � l (Rose 1957; Brink & Satchler 1968). More generally, we consider
the spectral expansion of a scalar function f

f (ϑ, ϕ) =
∑
lm

f lmY m
l (ϑ, ϕ) . (3.1)

Since the set of all spherical harmonics form a complete and orthonormal basis on
the sphere S2: ∫

S2

dω Y ∗m
l (ϑ, ϕ)Y m′

l′ (ϑ, ϕ) = δmm′δll′ , (3.2)

the spectral coefficients are in principle obtained by the integral

f lm =

∫
S2

dω Y ∗m
l (ϑ, ϕ)f (ϑ, ϕ) . (3.3)

Here dω = sin ϑ dϑ dϕ denotes the area element on the sphere S2 and the superscript
star indicates the complex conjugate. For numerical applications, however, this integral
must be replaced by a discrete sum. For the hydrodynamic part it will be useful to
extend the spherical harmonics to l < 0 by defining Y m

−(l+1) ≡ Y m
l .

A function whose spectral coefficients f lm vanish for l � b is called a band-
limited function with band limit b (Healy et al. 2003). We solve the dynamics of
the membrane by restricting to the space of band-limited shape functions. Since the
spectral amplitude of smooth functions decays exponentially with l (Boyd 2001), this
scheme is already very accurate for low b.

To obtain the expansion coefficients out of a given band-limited function, we choose
a finite number of collocation markers (ϑi, ϕi), i = 1, . . . , n at the membrane. A scalar
function f (ϑ, ϕ) on the membrane is then determined by its values at these points
fi ≡ f (ϑi, ϕi), whereas in spectral space this function is represented by the spectral
coefficients f lm up to the bandwidth b. Transformation from spectral space to real
space is easily done by evaluating the spherical harmonics at the collocation points

fi =
∑
lm

f lmY m
l (ϑi, ϕi) ≡

∑
lm

Alm
i f lm . (3.4)
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If the transformation matrix Alm
i is square and regular, the inverse transformation

can be obtained by

f lm =
∑

i

fi(A
−1)lmi , (3.5)

where A−1 is the inverse of A. However, often more collocation points than spectral
modes are used (Healy et al. 2003): a natural choice is to define the collocation
markers i ≡ (j, k) equidistantly in ϑ and ϕ, where we shift the values of ϑ away from
the poles to avoid numerical problems in the vicinity of the pole (Boyd 2001)

ϑ(j,k) ≡ (2j + 1)π

4b
, (3.6)

ϕ(j,k) ≡ kπ

b
, (3.7)

with j, k = 0, . . . , 2b − 1. With this choice the number of markers n = 4b2 is larger
than the number of spectral modes b2. In this case A−1 must be replaced by the
Moore-Penrose-Pseudoinverse (Swarztrauber & Spotz 2004).

The expressions for the metric and curvature involve first-order and second-
order derivatives, respectively. The main advantage of spectral methods is that
the derivatives of the basis functions are known algebraically (Rose 1957; Brink
& Satchler 1968), and therefore differentiation can be performed with high accuracy
for band-limited functions. Similarly, the integral over the function f is evaluated
numerically via ∫

S2

dω f (ϑ, ϕ) =
√

4πf 00 , (3.8)

which follows easily from Y 0
0 (ϑ, ϕ) = 1/

√
4π. Once the derivatives of the shape

functions are known, all further geometrical computations are performed at the
collocation points in physical space. It is straightforward to numerically calculate
the energy density of a given shape for a given constitutive law with high accuracy.
Similarly, the variation of the energy density is evaluated for a given shape and
variation of the shape function.

Elastic forces

To obtain the force density at the collocation points, we need to calculate the variation
of the total free energy for special variations of the shape. The spectral coefficients
of the force density are obtained in the most direct way when we choose the specific
variations

δr lm
i (ϑ, ϕ) ≡ − sin ϑ√

g(ϑ, ϕ)
Y ∗m

l (ϑ, ϕ)ei , l = 0, . . . , b ; m = −l, . . . , l ; i = x, y, z.

(3.9)
The variation of the metric and curvature tensor resulting from this shape variation
can be evaluated easily using the known derivatives of the shape function. Since the
derivatives of the energy density with respect to metric and curvature are known
analytically, the variation of the elastic energy (2.3) can be calculated easily. For the
specific choice of δr lm

i (3.9), this yields directly the Cartesian spectral force components

δH = −
∫

M
da f · δr lm

i =

∫
S2

dω f · eiY
∗m
l (ϑ, ϕ) = f lm

i . (3.10)
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Hydrodynamics

We follow a similar strategy for the hydrodynamic part of the problem. To solve
the hydrodynamic equations, we choose a complete set of basis functions in three-
dimensional space that automatically fulfil Stokes’ equations. These so-called Lamb
modes (Lamb 1932; Happel & Brenner 1983) can be defined as appropriate linear
combinations of vector spherical harmonics. Spherical coordinates r , θ and φ in the
laboratory frame as well as the corresponding basis vectors er , eθ and eφ are best
suited for calculations concerning the Lamb modes. We stress again the difference
between the Lagrangian coordinates (ϑ, ϕ), which serve as markers for the material
points, and the angles (θ, φ), which are spherical coordinates in the laboratory frame.
With help of the surface gradient on the sphere S2

∇S ≡ eθ ∂θ +
1

sin θ
eφ∂φ (3.11)

the vector spherical harmonics are given by (Morse & Feshbach 1953)

Ym
l (θ, φ) ≡ Y m

l (θ, φ)er , (3.12)

Ψ m
l (θ, φ) ≡ 1√

l(l + 1)
∇SY m

l (θ, φ) , (3.13)

Φm
l (θ, φ) ≡ 1√

l(l + 1)
er × ∇SY m

l (θ, φ) . (3.14)

The Lamb modes then are

Up
l,m(θ, φ) ≡ 1

2(l + 1)(2l + 3)

[
l(l + 1)Ym

l (θ, φ) + (l + 3)
√

l(l + 1)Ψ m
l (θ, φ)

]
,

(3.15)

Uφ
l,m(θ, φ) ≡ lYm

l (θ, φ) +
√

l(l + 1)Ψ m
l (θ, φ) , (3.16)

Uχ
l,m(θ, φ) ≡ −

√
l(l + 1)Φm

l (θ, φ) . (3.17)

With the scalar spherical harmonics and the Lamb modes as basis functions the
pressure and velocity fields can be expanded for the external and internal as well as
the induced flow

pα(r, θ, φ) = ηα
∑
lm

pα
l,mrlY m

l (θ, φ) , (3.18)

uα(r, θ, φ) =
∑
lm

(
pα

l,mrl+1Up
l,m(θ, φ) + φα

l,mrl−1Uφ
l,m(θ, φ) + χα

l,mrlUχ
l,m(θ, φ)

)
.

(3.19)

Owing to the regularity of the induced flow at the origin and the boundary conditions
at infinity (2.13), the sums are restricted to l � 0 for ui

ind and l � −2 for uo
ind.

The remaining boundary conditions (2.12) and force balance condition (2.10)
result in linear equations for the coefficients of the Lamb modes. For our choice
of collocation points, we have an overdetermined system that can be solved in a least-
square sense. In this way we obtain the hydrodynamic flow for any given deformation
of the capsule.

Since the capsule is simply advected with the flow (2.12), we perform Euler steps
with a sufficently small time step to determine the dynamics of the capsule. Higher-
order methods such as a second-order Runge–Kutta have been tested, but did not
yield significant improvements in terms of stability and overall simulation time.



216 S. Kessler, R. Finken and U. Seifert

0

0.05

0.10

0.15

0.20

0.25

0.30

–1.0 –0.5 0 1.00.5 1.5 2.0 2.5 3.0

η
° R

0 
/μ

τ

λ / μ

l = 2
l = 3
l = 4

Figure 2. Comparison of numerically and analytically obtained relaxation time. The symbols
show numerically obtained values of the scaled inverse relaxation time ηoR0/μτ of bending
modes as a function of the ratio λ/μ for different harmonic indexes l = 2, l = 3, l = 4 and
κ = 0. The curves are the analytic solution of the secular equation (24) of Rochal et al. (2005).

4. Spherical capsules
To test our method, we compare with quasi-spherical results that can be obtained

analytically. These tests comprise the relaxation dynamics of a capsule to its spherical
reference shape in quiescent fluid and the stationary deformation of a capsule in
linear shear flow for low shear rates.

Small deformations of an initially spherical capsule relax exponentially in time.
Rochal, Lorman & Mennessier (2005) have identified the normal modes, and
calculated the corresponding relaxation times. The relaxation modes are linear
combinations of vector spherical harmonics and are likewise labelled by l, m. For each
set of angular momentum numbers, three relaxation normal modes exist, which have
been termed ‘stretching’, ‘bending’, and ‘shear’ modes, respectively. The corresponding
relaxation times are obtained from the eigenvalue equation (24) of Rochal et al.
(2005).

As a numerical test of our code, a spherical capsule was deformed in the direction
of a normal mode, and the time constant of the subsequent relaxation to equilibrium
was extracted. In figure 2, we compare the relaxation times of selected modes as
a function of the Lamé parameter λ with the theoretical predictions, with excellent
agreement.

Switching on the shear flow with a low shear rate, the capsule relaxes into a
stationary shape with a tank-treading motion. The stationary deformations have been
calculated to first and second order in the deformation by Barthès-Biesel & Rallison
(1981). The deformation of the capsule is measured by the time-dependent Taylor
deformation parameter

D ≡ L − S

L + S
, (4.1)

where L is the longest and S is the shortest distance of the membrane from the centre
(see figure 1). In the long time limit, D assumes a stationary value D0, which is to
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first order in χ (C̃0 = 1)

D0 ≈ 5

4

ν + 2

ν + 1 + 2κ̃(ν + 5)
χ =

5

8

(4µ + 3λ)R0η
o

(µ + λ)µ +
(
2κ/R2

0

)
(3λ + 5µ)

γ̇ . (4.2)

In our simulations, the unstressed capsule is subjected to an abruptly started linear
shear flow. Numerically, the deformation and inclination are not calculated directly
according to definition (4.1). As described by Ramanujan & Pozrikidis (1998), we find
it more suitable to use instead the deformation parameter of an ellipsoid with the
same tensor of inertia. In the small deformation limit, both definitions are equivalent.

The simulations were performed by using a bandwidth of b = 11 corresponding to
121 modes, and a total of N = 4b2 = 484 grid points. The bending energy was chosen
to prevent the formation of wrinkling modes within the bandwidth. The time step was
chosen small enough to yield a stable evolution. Typical values were �t ∼ 1/(1000γ̇ ).
The time evolution of the deformation parameter of an initially spherical capsule is
shown in figure 3 for different shear rates and fixed elastic parameters. To illustrate
the stationary tank-treading motion of the capsule, we also show the distance of
a marker point on the membrane from the centre of the capsule as a function of
time. This distance oscillates with twice the tank-treading frequency between L and
S. At low shear rate, we observe a monotonic relaxation of the deformation to its
stationary value D0, while for large χ and ε a pronounced over-shoot is observed
(cf. Ramanujan & Pozrikidis 1998). The numerical deformation D0 clearly follows the
asymptotic prediction (4.2) for low shear rate. For large shear rates, the simulation
data show deviations from linear behaviour. These are probably due to the rotational
part of the linear shear flow, since for non-zero vorticity the stationary deformation
is a nonlinear function of the shear rate even in the quasi-spherical limit.

5. Ellipsoidal capsules
After successfully testing our spectral method by means of a spherical initial or

reference shape, we can investigate the dynamics of capsules with an ellipsoidal initial
shape. This case is both experimentally more realistic, since synthesised capsules are
never perfectly spherical, and leads to a richer dynamical behaviour of the capsules.
In a non-spherical reference shape, the membrane points are no longer equivalent
to each other. During the course of a tank-treading motion, a membrane element is
therefore periodically deformed, which costs elastic energy. Any membrane element
therefore energetically prefers its initial position (or one of the equivalent positions
by symmetry of the reference shape). This effect is called ‘shape memory’, and also
plays an important role in the dynamics of red blood cells (Fischer 2004; Watanabe
et al. 2006).

The shape memory effect is the cause of oscillations of the deformation and the
inclination angle in the tank-treading state, as observed experimentally by Chang
& Olbricht (1993), Walter et al. (2001), and Abkarian et al. (2007), and also found
in the simulations by Ramanujan & Pozrikidis (1998). Recently, a modified Keller–
Skalak type theory was proposed (Skotheim & Secomb 2007), which explains this
behaviour qualitatively. Their model also predicts an oscillating tank-treading motion
at large shear rate, and a tumbling motion at lower shear rate. In the tumbling
regime, a tracer particle on the membrane oscillates around a fixed position with
respect to the capsule shape. In the intermediate shear rate regime, intermittent
motion, which alternates between tumbling and tank-treading, is predicted. Although
direct experimental evidence for this behaviour is missing, indirect evidence was
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Figure 3. Dynamics of an initially spherical capsule in shear flow. (a, b) Time evolution of
maximal and minimal radius and radius of a tracer particle for abruptly starting shear flow at
time t = 0 for different shear rates χ = 0.01 (a), χ = 0.3 (b). (c) Time evolution of deformation
parameter D for different shear rates: χ = 0.03 (continuous), χ = 0.3 (dotted), χ = 3 (dashed
line). (d) Plot of the stationary deformation parameter D0 as a function of the dimensionless
shear rate χ . For low shear rates the results of the linear theory (equation (4.2), solid line) are
approached whereas for higher shear rates deviations are clearly visible. Constant parameters
for (a)–(d): viscosity contrast ε = 10, Poisson number ν = 0.5, non-dimensional bending
rigidity κ̃ = 0.01 and spontaneous curvature C̃0 = 1.

provided by Abkarian et al. (2007), who discovered a hysteresis of the transition from
tumbling to tank-treading and the reverse transition by increasing or decreasing the
shear rate, respectively. We use our spectral method to systematically explore the
full phase diagram in a large range in shear rate as well as viscosity contrast. Thus
the quantitative accuracy of the reduced model in Skotheim & Secomb (2007) can
be tested. While Ramanujan & Pozrikidis (1998) observed the onset of a tumbling
motion for low sphericity, owing to the formation of cusp-like instabilities in the
shape the simulations never went beyond half a tumbling motion. Grid distortion
also required the use of explicit numerical smoothing in more recent simulations
(Pozrikidis 2003b). Since bending rigidity is included in our method, the formation
of cusps can be suppressed, leading to a more stable algorithm. The cutoff at a
finite bandwidth in our algorithm also effectively implements numerical smoothing.
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Figure 4. Phase diagram of an elastic capsule in shear flow with the tumbling and
tank-treading regimes as a function of the viscosity contrast ε and the inverse dimensionless
shear rate χ−1. The solid line is a guide to the eye separating the tank-treading (circles),
tumbling (crosses) and transient region (diamonds) for our simulation. Dashed lines indicate
the phase diagram due to Skotheim & Secomb (2007) for the same parameter set. In the region
between the dashed lines intermittent motion is predicted. We have not found conclusive
evidence for this kind of motion, but rather found transient dynamics from tumbling to
tank-treading. The numbers correspond to following figures, where parts of the phase diagram
are examined closer. Geometrical parameters: a2 = a3 = 0.9a1, elastic parameters: ν = 0.333,
κ̃ = 0.01, C̃0 = 1.

Nevertheless high-order modes accumulate numerical errors during the simulation
run, in particular at large shear rates, thereby limiting the maximum simulation time.

Phase diagram

Our numerical results for the overall phase diagram are summarized in figure 4, where
the dynamical behaviour is plotted as a function of the inverse dimensionless shear
rate χ−1 and the viscosity contrast ε. At low shear rate, the hydrodynamic forces
are too small to overcome the energy barrier present for a tank-treading motion
due to the shape memory effect. Therefore, capsules tumble at low χ , while an
oscillating tank-treading behaviour is stable at large χ . We also observe a transient
dynamics from tumbling to tank-treading for large viscosity contrast ε, which will be
discussed below. Although this transient dynamics might be taken as an indication
of intermittent motion, we could not find conclusive evidence during the time of
our simulation runs. In particular, we never observed a transition from tank-treading
to tumbling. Also shown in this figure is the phase diagram for the analytic model
by Skotheim & Secomb (2007). The qualitative agreement, apart from the apparent
lack of intermittent behaviour, seems to be rather good, given the crude dynamics
implemented in the reduced analytical model. Only at large viscosity contrast do
pronounced differences in the shape of the phase diagram start to feature. Closer
inspection of the data reveals significant oscillations of the axis lengths, which are fixed
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Figure 5. Definition of oscillation amplitudes of phase and inclination angle in tumbling and
tank-treading states of motion. (a) The tumbling state: here the inclination angle β changes
monotonically while the phase angle δ oscillates with amplitude 
δ as is indicated by a tracer
particle. (b) The tank-treading motion, where the inclination angle β oscillates, while the phase
angle δ and the tank-treading angle α change monotonically.

in the reduced model. These breathing modes may alter the intermittent character of
the capsule motion in the model by Skotheim & Secomb (2007).

For all simulations the deformation remained well within the range of validity of
Hooke’s law. The extension ratios (see the Appendix) never deviated more than 5%
from unity. The results are therefore not susceptible to the specific elastic law in this
regime.

Oscillation amplitudes

We now quantify the oscillations in the tank-treading and tumbling state and
investigate the transient dynamics. For the definition of inclination β and tank-
treading angle α see figure 1. They are defined as the angles between the flow
direction and the maximal radius or a marker point, respectively. Initially, these
angles are chosen to lie in the interval [0, π[. To make both α(t) and β(t) continuous
functions of time, we manually add 2π after a full rotation, thereby keeping the
variation of each angle between subsequent time steps as small as possible. As a
consequence, the angles can assume values outside the interval [0, 2π[ at later times.
This allows us to count the number of full rotations, which would not be possible if
all angles were restricted to [0, 2π[. The phase shift of a material point away from its
elastic minimum

δ(t) ≡ (α(t) − β(t)) − (α(0) − β(0)) (5.1)

is called phase angle.
In the tank-treading regime the inclination angle β oscillates around a stationary

value β0 with amplitude 
β while the tank-treading angle α or phase angle δ changes
monotonically with time (see figure 5). In the tumbling regime, the inclination angle β

changes monotonically with time, while the phase angle δ oscillates around a fixed
value δ0 with an oscillation amplitude 
δ. Figure 6 shows parametric plots of
inclination vs. phase angle for a tumbling and a tank-treading motion, as well as a
transition from tumbling to tank-treading. The arrows indicates the direction of time
in this plot. In figures 6(c) and 6(d), one can see the transition from a tumbling motion
to an oscillating tank-treading motion near the transition. Despite an intensive search,
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Figure 6. Typical plots of inclination angle β vs. phase angle δ for tank-treading, tumbling
and transient dynamics. The sites of these plots in the phase diagram are labelled in figure 4 by
corresponding numbers. (a) Typical tank-treading motion: β oscillates around a stable value,
while δ changes monotonically. The arrow denotes the direction in time, viscosity contrast
ε = 13.3, non-dimensional shear rate χ = 0.08. (b) Typical tumbling motion: δ oscillates
around a stable value, while β changes monotonically, ε = 13.3, χ = 0.025. (c, d) Typical
motions for tumbling to tank-treading transition, ε = 23, χ = 0.2 in (c) and ε = 27.5, χ = 0.2
in (d). The remaining parameters are equal to those used in figure 4.

we have not observed the reverse behaviour: a tank-treading capsule never started to
tumble. This might indicate that the initial tumbling motion is only transient.

For a fixed viscosity contrast ε = 10, figure 7 shows the shear rate dependence of
the mean inclination angle β0 in the tank-treading regime, of the mean phase angle
δ0 in the tumbling regime, and of the oscillation amplitudes in both the tumbling and
the tank-treading regime. For low shear rates, in the tumbling regime, the mean phase
angle δ0 and the oscillation amplitude 
δ of the phase angle are plotted as a function



222 S. Kessler, R. Finken and U. Seifert

0.05

0.10

0.15

0.20

0.25

0 0.01 0.02 0.03 0.04
χ

0.05 0.06 0.07 0.08
0

0.05

0.10

0.15

0.20

0.25

Tumbling Tank-treading
Δ

δ
 / 

2π
, δ

0 
/ π

Δ
β
 / 

2π
, β

0 
/ π

Figure 7. Mean phase angle δ0 (small crosses), mean inclination angle β0 (small filled circles),
and oscillation amplitudes of phase angle 
δ (pluses) and inclination angle 
β (circles) for
different shear rates χ and a constant viscosity contrast ε = 10. This cut through the phase
diagram with ε = 10 is indicated by the dotted line in figure 4. At low shear rates the capsule
tumbles with 
δ < π/2 where the dashed line indicates a linear behaviour for small χ , at
higher shear rates the capsule tank-treads with 
β < π/2. The remaining parameters are as in
figure 4.

of the shear rate. Whereas the mean phase angle depends only weakly on the shear
rate, the oscillation amplitude of the phase angle increases for increasing shear rate.
For low shear rates, this amplitude grows approximately linearly with the shear rate.
When the amplitude reaches approximately π/2, the capsule starts to tank-tread.

For higher shear rates, in the tank-treading regime, the mean inclination angle β0

and the oscillation amplitude 
β of the inclination angle are plotted as a function
of χ . With decreasing shear rate, the oscillation amplitude of the inclination angle
increases until it reaches approximately π/2, where the transition to tumbling takes
place. The mean inclination angle also increases, but does not reach π/4. Perhaps
surprisingly, the oscillation amplitude can be larger than the mean inclination angle
β0 in the tank-treading regime, implying that the inclination angle is negative for
short periods of time.

6. Summary
During the last few years, the dynamics of elastic capsules in linear shear flow

has received increasing attention. Theoretical descriptions restricting the capsule
deformation to a few degrees of freedom predicted a rich dynamical phase
diagram, comprising tank-treading, tumbling and an intermittent motion. While recent
experiments have found a hysteresis in the tank-treading to tumbling transition for
varying shear rate, direct observations of intermittent behaviour are lacking so far.

To investigate elastic capsule systems, while maintaining complete control over the
underlying equations of motion, we implemented a spectral method to numerically
solve the equations of motion for a capsule. The capsule deformation is expanded
into smooth basis functions, leading to accurate estimates of the membrane forces.
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The code is flexible and stable enough to permit simulations for a large range of
shear rates and viscosity contrasts between inner and outer fluids.

Using this code, we could quantitatively recover the asymptotically known
stationary deformations of initially spherical capsules for low shear rate.

Finally we applied the numerical method to an ellipsoidal capsule system similar to
the one discussed by Skotheim & Secomb (2007). We observe a stable tank-treading
motion for large shear rate, in which the inclination angle oscillates with twice the
tank-treading frequency. At lower shear rate, or higher viscosity contrast, the capsule
starts to tumble. We systematically explored the capsule dynamics over a wide range
of viscosity ratios and shear rates. The resulting phase diagram is qualitatively similar
to the theoretical predictions made by Skotheim & Secomb (2007), with the exception
of intermittent dynamics: while dynamic transitions from tumbling to a stable tank-
treading motion were observed, the reverse transition could not be observed. An
analysis of the results suggests that the tumbling motion is only transient in this part
of the phase diagram.

Much longer simulation runs and a more detailed analysis near the presumed
intermittency region are needed to decide whether intermittent motion is merely an
artifact of the reduced dynamics employed by Skotheim & Secomb (2007). Differences
from the phase diagram at large viscosity ratios are probably due to the restriction
to a fixed capsule shape in the reduced model.

In conclusion, the spectral method developed in this work is a stable and accurate
complement to existing numerical methods. It allows the systematic exploration of
capsule dynamics over a wide range of material constants. Theoretical predictions
of the phase diagram of ellipsoidal capsules are qualitatively confirmed, although
quantitative differences exist, especially for large viscosity ratios. The nature of
predicted intermittent behaviour warrants further investigation.

Financial support of the DFG within the priority programme SPP 1164 “Nano-
and Microfluidics” is gratefully acknowledged.

Appendix. Differential geometry for deformed capsules
We first recall some definitions of differential geometry that can be found in Frankel

(2004) and Marsden & Hughes (1983). We cover the two-dimensional surface with
a coordinate net as outlined in § 2, where the coordinates (ϑ, ϕ) label the material
points. The location of the surface at time t is given by the shape function r(ϑ, ϕ; t).
The basis vectors, defined by

ei ≡ ∂i r , i = ϑ, ϕ , (A 1)

span the tangent planes and induce the outward-pointing normal unit vector

n ≡ 1

|eϑ × eϕ | eϑ × eϕ . (A 2)

They also define the metric tensor g with covariant components

gij ≡ ei · ej , (A 3)

where we use the ordinary three-dimensional Euclidian scalar product. The inverse
metric tensor g−1 with contravariant components is given by

gijgjk ≡ δi
k , (A 4)
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where Einstein’s sum convention is employed. The determinant of the metric tensor

g ≡ det g (A 5)

is connected to the basis vectors via
√

g = |eϑ × eϕ | . (A 6)

The area of an infinitesimal patch with width dϑ and length dϕ in Lagrange
coordinates is given by

da =
√

gdϑdϕ . (A 7)

The curvature tensor k, defined by

kij ≡ ei · ∂j n = −n · ∂iej , (A 8)

measures how the normal vector n changes its direction on moving along the
membrane. Its eigenvalues k1,2 are called principle curvatures and are the inverse
radii of the principle curvature circles. The trace and determinant of the curvature
tensor define mean H and Gaussian curvature K , respectively. They serve as scalar
invariants of the curvature tensor and can be expressed by the sum and the product
of the principle curvatures

2H ≡ tr k = gij kji = k1 + k2 , K ≡ det k = k1k2 . (A 9)

In order to describe a deformation and an elastic response, an unstressed reference
shape R(ϑ, ϕ) must be specified as was mentioned in § 2. The corresponding basis
vectors E, normal vector N and metric G are defined analogously.

The Lagrangian strain tensor ε with covariant components

εij ≡ 1
2
(gij − Gij ), i = ϑ, ϕ, (A 10)

measures the change in length elements of the membrane upon deformation (Marsden
& Hughes 1983).

At each point of the reference membrane there are two orthogonal directions, called
principle extension directions, for which the deformation is maximal and minimal.
The corresponding deformed line elements along these directions remain orthogonal
and have a stretched length given by the so-called extension ratios λi measured in
units of the undeformed line elements.

An infinitesimal material patch on the reference shape with area dA =
√

Gdϑdϕ

will deform into the area element da =
√

gdϑdϕ on the current shape. The surface
dilation J is therefore given by the product of the extension ratios

J ≡ da

dA
=

√
g

G
= λ1λ2 . (A 11)

All scalar deformation quantities can be expressed by the extension ratios or
equivalently by the eigenvalues of the Lagrangian strain tensor εi , which measure the
difference of the extension ratios from unity

εi ≡ 1
2

(
λ2

i − 1
)

. (A 12)

REFERENCES

Abkarian, M., Faivre, M. & Viallat, A. 2007 Swinging of red blood cells under shear flow. Phys.
Rev. Lett. 98, 188302.



Swinging and tumbling of elastic capsules in shear flow 225

Abkarian, M., Lartigue, C. & Viallat, A. 2002 Tank treading and unbinding of deformable
vesicles in shear flow: Determination of the lift force. Phys. Rev. Lett. 88, 068103.

Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear
flow. J. Fluid Mech. 100, 831.

Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional
membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211.

Barthès-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely
suspended in a linear shear-flow. J. Fluid Mech. 113, 251.

Beaucourt, J., Biben, T. & Misbah, C. 2004a Optimal lift force on vesicles near a compressible
substrate. Europhys. Lett. 67, 676.

Beaucourt, J., Rioual, F., Seon, T., Biben, T. & Misbah, C. 2004b Steady to unsteady dynamics
of a vesicle in a flow. Phys. Rev. E 69, 011906.

Biben, T. & Misbah, C. 2003 Tumbling of vesicles under shear flow within an advected-field
approach. Phys. Rev. E 67, 031908.

Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods , 2nd edn. Dover.

Brink, D. M. & Satchler, G. R. 1968 Angular Momentum , 2nd edn. Clarendon.

Cantat, I. & Misbah, C. 1999 Lift force and dynamical unbinding of adhering vesicles under shear
flow. Phys. Rev. Lett. 83, 880.

Chang, K. S. & Olbricht, W. L. 1993 Experimental studies of the deformation and breakup of a
synthetic capsule in steady and unsteady simple shear-flow. J. Fluid Mech. 250, 609.

Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matter
18, L185.

Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86, 3304.

Frankel, T. 2004 The Geometry of Physics , 2nd edn. Cambridge University Press.

de Haas, K. H., Blom, C., van den Ende, D., Duits, M. H. G. & Mellema, J. 1997 Deformation
of giant lipid bilayer vesicles in shear flow. Phys. Rev. E 56, 7132.

Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics , 1st edn. Martinus Nijhoff.

Healy, D. M., Rockmore, D. N., Kostelec, P. J. & Moore, S. 2003 FFTs for the 2-sphere-
improvements and variations. J. Fourier Anal. Applics. 9, 341.

Helfrich, W. 1973 Elastic properties of lipid bilayers–theory and possible experiments. Z.
Naturforsch. (C) 28, 693.

Kantsler, V., Segre, E. & Steinberg, V. 2007 Vesicle dynamics in time-dependent elongation flow:
Wrinkling instability. Phys. Rev. Lett. 99, 178102.

Kantsler, V. & Steinberg, V. 2005 Orientation and dynamics of a vesicle in tank-treading motion
in shear flow. Phys. Rev. Lett. 95, 258101.

Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of
vesicles in shear flow. Phys. Rev. Lett. 96, 036001.

Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear-flow.
J. Fluid Mech. 120, 27.

Kraus, M., Wintz, W., Seifert, U. & Lipowsky, R. 1996 Fluid vesicles in shear flow. Phys. Rev.
Lett. 77, 3685.

Lamb, H. 1932 Hydrodynamics , 6th edn. Cambridge University Press.

Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an
external flow. Phys. Rev. Lett. 99, 218101.

Leyrat-Maurin, A. & Barthes-Biesel, D. 1994 Motion of a deformable capsule through a
hyperbolic constriction. J. Fluid Mech. 279, 135.

Leyrat-Maurin, A., Drochon, A. & Barthes-Biesel, D. 1993 Flow of a capsule through a
constriction - application to cell filtration. J. Phys. Paris III 3, 1051.

Li, X. Z., Barthès-Biesel, D. & Helmy, A. 1988 Large deformations and burst of a capsule freely
suspended in an elongational flow. J. Fluid Mech. 187, 179.

Lorz, B., Simson, R., Nardi, J. & Sackmann, E. 2000 Weakly adhering vesicles in shear flow:
Tanktreading and anomalous lift force. Europhys. Lett. 51, 468.

Marsden, J. E. & Hughes, T. J. R. 1983 Mathematical Foundations of Elasticity . Prentice-Hall.

Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett.
96, 28104.



226 S. Kessler, R. Finken and U. Seifert

Mohandas, N. & Evans, E. 1994 Mechanical properties of the red cell membrane in relation to
molecular structure and genetic defects. Annu. Rev. Biophys. Biomolec. Struct. 23, 787.

Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics . McGraw-Hill.

Noguchi, H. & Gompper, G. 2004 Fluid vesicles with viscous membranes in shear flow. Phys. Rev.
Lett. 93, 258102.

Noguchi, H. & Gompper, G. 2005 Shape transitions of fluid vesicles and red blood cells in capillary
flows. Proc. Natl Acad. Sci. USA 102, 14159.

Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev.
Lett. 98, 128103.

Pozrikidis, C. 1995 Finite deformation of liquid capsules enclosed by elastic membranes in simple
shear-flow. J. Fluid Mech. 297, 123.

Pozrikidis, C. 2001 Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 250.

Pozrikidis, C. 2003a Modelling and Simulation of Capsules and Biological Cells . Chapman &
Hall/CRC.

Pozrikidis, C. 2003b Numerical simulation of the flow-induced deformation of red blood cells.
Ann. Biomed. Engng 31, 1194.

Pozrikidis, C. 2006 A spectral collocation method with triangular boundary elements. Engng Anal.
Bound. Elem. 30, 315.

Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes
in simple shear flow: Large deformations and the effect of fluid viscosities. J. Fluid Mech. 361,
117.

Rioual, F., Biben, T. & Misbah, C. 2004 Analytical analysis of a vesicle tumbling under a shear
flow. Phys. Rev. E 69, 061914.

Rochal, S. B., Lorman, V. L. & Mennessier, G. 2005 Viscoelastic dynamics of spherical composite
vesicles. Phys. Rev. E 71, 021905.

Rose, M. E. 1957 Elementary Theory of Angular Momentum . Wiley.

Seifert, U. 1999a Fluid dynamics in hydrodynamic force fields: Formalism and an application to
fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405.

Seifert, U. 1999b Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876.

Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other nonspherical capsules in shear
flow: Oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98,
078301.

Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: A numerical
study. Phys. Rev. E 64, 11916.

Swarztrauber, P. N. & Spotz, W. F. 2004 Spherical harmonic projectors. Math. Comput. 73, 753.

Vlahovska, P. M. & Gracia, R. S. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev.
E 75, 016313.

Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules: shape
oscillations and membrane folding. Colloid Surf. A 183–185, 123.

Wang, Y. C. & Dimitrakopoulos, P. 2006 A three-dimensional spectral boundary element algorithm
for interfacial dynamics in Stokes flow. Phys. Fluids 18.

Watanabe, N., Kataoka, H., Yasuda, T. & Takatani, S. 2006 Dynamic deformation and recovery
response of red blood cells to a cyclically reversing shear flow: Effects of frequency of cyclically
reversing shear flow and shear stress level. Biophys. J. 91, 1984.




